ioremap.net

Storage and beyond

reverbrain.com is up and running

Reverbrain is a company we started to provide support and solutions for distributed storage and realtime computation problems.

We created the whole stack of technologies ranging from the lowest level of data storage upto high-level processing pipeline.

Time moves on and we see how complex is to deal with massively increasing amounts of data. We provide solutions for true-way horizontal scaling with fair system complexity. Our storage appliances lay in the area where one has to host billions of small-to-medium objects upto huge data streaming systems.

Your data should nost just lay in archive in the distributed system — realtime pipeline processing is our vision of how data has to be handled. We use them by ourself and want to provide the best experience for our customers.

A short story on trying to use Vagrant to put elliptics node into container

I want to use containers to run multiple elliptics nodes with different versions on the same server mainly to be able to quickly switch between them.

I decided to run Vagrant on top of VirtualBox, since I do need for on-demand compilation of the new package versions and can not just wrap some application into container.
Running vagrant on top of Fedora19 fully succeeded, now I have several environments to experiment.

But main goal was to be able to create ‘a box’ and put it to remote nodes to create a network of different elliptics versions, and that part is rather hard with vagrant. First, I didn’t find how to export vagrant box not to its cloud but into the local file. But I could do that with virtualbox images.
Creating own box while I actually need a default one with several packages installed is rather overkill I think.

But here comes the second problem, the latest vagrant and the latest virtualbox do not work on various debians. Installed the latest virtualbox on wheezy default machine ended up with timed out vagrant. Running it on top of backported 3.14 kernel doesn’t work at all.

It was soo good on my development server, and miserably failed on testing machines.
Adding that I could not easily find out how to export updated boxes via files I decided to switch to something else. In particular, I’m thinking about Docker, although it is quite different, for example I do not know how to update image when I have new version in repository, or even how to build it inside the image and show me errors I could fix in place… Docker is more on how to pack already cooked up application with all its configs and tunings, while I need this for development.

, ,

Elliptics 2.26 changelog

Here is a human-readable changelog of 2.26 major version of elliptics distributed storage: http://doc.reverbrain.com/elliptics:major-version-updates#v226

The main feature is multiple backends in the single server. One can turn on/off them, change state, each backend has own IO execution pool. Basically it allows to change old scheme of having many elliptics servers, one per disk/directory/mountpoint, to just one server with multiple backends.
This greatly simplifies node setup and heavily decreases route table updates.

Also added new C++ structured logger Blackhole. One can send logs into ElasticSearch, syslog or use oldschool files.

We also cleaned up code and client logic, introduced new kinds of errors, simplified protocol and fixed bunch of bugs.

Enjoy and stay tuned!

,

How is Redis used in twitter

Everyone knows Redis – high-performance persistent cache system. Here is an article on how Redis is being used in Twitter.

It happens that Twitter not only forked and extended 1 year old Redis version, but looks like it doesn’t have plans to upgrade. Redis and its latencies are much-much-much faster than Twitter infrastructure written in Java because of GC in JVM. This allows to put a bunch of proxies on top of Redis caching cluster to do cluster management, the thing Redis misses for a while.

Also Twitter uses Redis only to cache data, doesn’t care about consistency issues, doesn’t use persistent caching, at least article says data is being thrown away when server goes offline.
It is client responsibility to read data from disk storage if there is no data in the cache.

Article desribes Twitter timeline architecture, and that’s quite weird to me: instead of having list of semifixed (or limited by size) chunks of timeline which are loaded on demand, they created a bunch of realtime updated structures in Redis, found non-trivial consistency issues and eventually ended up with the same simple approach of having ‘chunks’ of timeline stored in cache.

I started to compare cache management in Twitter using Redis with what we have in Reverbrain for caching: our Elliptics SLRU cache. It uses persistent caching system (which was also described a bit in article in comparison with memcache), but also uses persistent storage to backup cache, and while cache is actually segmented LRU, its backing store can be arbitrary large at size compared to Redis.

Although article is written as ‘set of facts’ somehow cut out of context (it was interview with the twitter employee), it is a good reading to think about caching, JVM, Redis and cache cluster architecture.

, , ,

Elliptics, golang, GC and performance

Elliptics distributed storage has native C/C++ client API as well as Python (comes with elliptics sources) and Golang bindings.

There is also elliptics http proxy Rift.

I like golang because of its static type system, garbage collection and built in lightweight threading model. Let’s test HTTP proxying capabilities against Elliptics node. I already tested Elliptics cache purely against native C++ client, it showed impressive 2 millions requests per second from 10 nodes, or about 200-220 krps per node using native API (very small upto 100 bytes requests), what would be HTTP proxying numbers?

First, I ran single client, single Rift proxy, single elliptics node test. After some tuning I got 23 krps for random writes of 1k-5k bytes (very real load) per request. I tested 2 cases when elliptics node and rift server were on the same machine and on different physical servers. Maximum latencies with 98% percentile were about 25ms at the end of the test (about 23 krps) and 0-3 ms at 18 krps not counting rare spikes at graph below.

elliptics-cache-rift-23krpsRift HTTP proxy writing data into elliptics cache, 1k-5k bytes per request

Second, I tested a simple golang HTTP proxy with the same setup – single elliptics node, single proxy node and Yandex Tank benchmark tool.

I ran tests using the following setups: golang 1.2 with GC=100 and GC=off and golang 1.3 with the same garbage collection settings. Results are impressive: without garbage collection (GC=ff) golang 1.3 test ran with the same RPS and latencies as native C++ client. Although proxy ate 90+ Gb of RAm. Golang 1.2 showed 20% worse numbers.

elliptics-cache-golang-1.3-gc-offGolang HTTP proxy (turned off garbage collection) writing data into elliptics cache, 1k-5k bytes per request

Turning garbage collection on with GC=100 setting lead to much worse results than native C++ client but yet it is quite impressive. I got the same RPS numbers for this test of about 23 krps, but latencies at the 20 krps were close to 80-100 msecs, and about 20-40 msecs at the middle of the test. Golang 1.2 showed 30-50% worse results here.

elliptics-cache-golang-1.3-gc-100Golang HTTP proxy (GC=100 garbage collection setting) writing data into elliptics cache, 1k-5k bytes per request

Numbers are not that bad for single-node setup. Writing asynchronous parallel code in Golang is incredibly simpler than that in C++ with its forest of callbacks. So I will stick to Golang for the network async code for now. Will wait for Rust to stabilize though.

, , ,

Crafting knowledge base the right way

Google is automatically building its next generation knowledge graph named Knowledge Vault

Although article is very pop-science (not science at all actually) and doesn’t contain any technical detail, it is clear on google’s idea and the way information retrieval systems head. Automatic knowledge gathering and fact extraction is also what I originally aimed at Reverbrain company, although my idea was much simpler – I wanted to automatically build a language model and fact relations between words to understand native language questions.

Aug 25 there will be a presentation of Google’s Knowledge Vault, I’m too much tempting to see it and try to gather and understand bits of information on how it is implemented inside.

Upfate: a paper on knowledge vault: Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion

, ,

Elliptics 2.25 changelog

We are proud to announce our current 2.25 production major version changelog in a human readable (not thousands of commits or several hundreds lines of packaging changelogs): http://doc.reverbrain.com/elliptics:major-version-updates#v225

Elliptics 2.25 is now in ‘support’ mode, i.e. we do not add new features which can break things, but do fix bugs and perform various cleanups.

,

Multi Data Center Replication in Cassandra

A good entry-level article on how replication (including multidatacenter) is implemented in Cassandra.

Basic idea is random (iirc there is weighted RR algorithm too) remote node selection which behaves like local storage (commit log + memory table) and ‘proxy’ which asynchronously sends data to remote replicas. Depending on strategies those remote replicas can be updated synchronously and can be in a different datacenter.

Seems good except that rack-awareness and complexity of the setup is not covered. Also synchronous update latencies like writing data to one node and then propagate update to others as well as local queue management are not covered at all.
But that’s a good start.

,

Machine learning, optimization and event stream management

This is a bit different post – it is not about storage per se, but actually it is.

Let me start a bit from the other side – I’ve read Netflix article about how they created their excellent recommendation service ( http://techblog.netflix.com/2012/06/netflix-recommendations-beyond-5-stars.html ), and it raised a question in my head – is there a way for system to heal itself if it can learn?

Well, machine learning is not quite a learning – it is an explicitly defined mathematical problem, but I wonder whether it can be applied to optimization problem.
And to simplify things, lets move away from storage to robots.

Consider a simple scenario – robot moves over the road to its final destination point. It has a number of sensors which tell its control system about speed, edge, current coordination, wheel state and so on. And there are 2 rotated wheels.

At some point robot’s right wheel moves into the hole. Robot starts turning over and in a few moments it will fall.
How to fix this problem?

There are numerous robot control algorithms which very roughly say ‘if sensor X says Y do Z’ and those parameters may vary and be controlled by the management optimization.
But what if we step away to more generic solution – what if we do not have such algorithms. But we can change wheel rotations and perform some other tasks which we do not know in advance how they affect current situation.

Solution to this problem allows to solve a storage problem too – if storage control system can write into multiple disks, which one to select so that read and write performance would be maximized, space is efficiently used and so on.

A bad solution uses heuristics – if disk A is slow at the moment, use disk B. If robot falls to the right, rotate the right wheel. And so on. It doesn’t really work in practice.

Another solution – a naive one – is to ‘try every possible solution’ – rotate the right wheel, if things are worse, stop it. Rotate the left wheel – check sensors, if situation changed – react accordingly. Combine all possible controls (at random or at some order), adjust each control’s ‘weight’, hopefully this will fix the things. But when feature space is very large, i.e. we can use many controls – this solution doesn’t scale.

So, what is a generic way to solve such a problem?
Or speaking a little bit more mathematician way – if we have a ‘satisfaction’ function on several variables (we move to given direction, all sensors are green), and suddenly something out of our control started happening, which changed satisfaction function badly (sensors became red), how to use our variables (wheels and other controls) to return things back to normal?

Mesa – Google’s analytic data warehousing system

I will bring back various tech article analysis in this blog

Let’s start with Mesa – Google’s adwords storage and query system. Albeit the article is very self-advertising and a little bit pathos, it still shows some very interesting details on how to design systems which should scale to trillions operations a day.

In particular, data is versioned and never overwritten. Old versions are immutable. Queries aka transactions operate on given version, which are asynchronously propagated over the google’s world datacenters. The only sync part is versioning database – committer updates/pins new version after update transaction criteria has been met, like number of datacenters have a copy and so on. As usual – it is Paxos. Looks like everything in Google uses Paxos, not Raft. Recovery, data movement and garbage collection tasks are also performed asynchronously. Since the only sync operation is version update, committer (updating client) can write heavy data in parallel into the storage and only then ‘attach’ version to those chunks.

Data is stored in (table, key, value) format, and keys are split in chunks. Data is stored in compressed columnar format within each chunk. Well, Mesa uses LevelDB, it explains and simplifies such things.

Mesa uses very interesting versioning – besides so called singletons – single version update, there are also ranges like [0, v0], [v1, v5], [v6, vN] named ‘deltas’ which are basically batches of key updates with appropriate versions. There are async processes which updates version ranges: compaction [0, vX] and new batch creation processes. For example to operate a query on version 7 in example above one could ‘join’ versions [0, v0], [v1, v5] and apply singletons v6 and v7. Async processes calculate various ‘common’ ranges of versions to speed up querying.

Because of versioning Mesa doesn’t need locks between query and update processing – both can be run heavily in parallel.

Here is an article: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42851.pdf

, ,

RIFT documentation update

We’ve updated RIFT documentation at http://doc.reverbrain.com/rift:rift

It includes new Authorization header (only riftv1 method is described, S3 methods are coming), handlers ACL updates

Enjoy and stay tuned!

, ,

Previous Posts